Stress enhances model-free reinforcement learning only after negative outcome
نویسندگان
چکیده
Previous studies found that stress shifts behavioral control by promoting habits while decreasing goal-directed behaviors during reward-based decision-making. It is, however, unclear how stress disrupts the relative contribution of the two systems controlling reward-seeking behavior, i.e. model-free (or habit) and model-based (or goal-directed). Here, we investigated whether stress biases the contribution of model-free and model-based reinforcement learning processes differently depending on the valence of outcome, and whether stress alters the learning rate, i.e., how quickly information from the new environment is incorporated into choices. Participants were randomly assigned to either a stress or a control condition, and performed a two-stage Markov decision-making task in which the reward probabilities underwent periodic reversals without notice. We found that stress increased the contribution of model-free reinforcement learning only after negative outcome. Furthermore, stress decreased the learning rate. The results suggest that stress diminishes one's ability to make adaptive choices in multiple aspects of reinforcement learning. This finding has implications for understanding how stress facilitates maladaptive habits, such as addictive behavior, and other dysfunctional behaviors associated with stress in clinical and educational contexts.
منابع مشابه
Operation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm
: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...
متن کاملReinforcement learning based feedback control of tumor growth by limiting maximum chemo-drug dose using fuzzy logic
In this paper, a model-free reinforcement learning-based controller is designed to extract a treatment protocol because the design of a model-based controller is complex due to the highly nonlinear dynamics of cancer. The Q-learning algorithm is used to develop an optimal controller for cancer chemotherapy drug dosing. In the Q-learning algorithm, each entry of the Q-table is updated using data...
متن کاملStress modulates reinforcement learning in younger and older adults.
Animal research and human neuroimaging studies indicate that stress increases dopamine levels in brain regions involved in reward processing, and stress also appears to increase the attractiveness of addictive drugs. The current study tested the hypothesis that stress increases reward salience, leading to more effective learning about positive than negative outcomes in a probabilistic selection...
متن کاملConfirmation bias in human reinforcement learning: Evidence from counterfactual feedback processing
Previous studies suggest that factual learning, that is, learning from obtained outcomes, is biased, such that participants preferentially take into account positive, as compared to negative, prediction errors. However, whether or not the prediction error valence also affects counterfactual learning, that is, learning from forgone outcomes, is unknown. To address this question, we analysed the ...
متن کاملPost-traumatic stress disorder symptoms, underlying affective vulnerabilities, and smoking for affect regulation.
BACKGROUND AND OBJECTIVES Post-traumatic stress disorder (PTSD) is overrepresented among cigarette smokers. It has been hypothesized that those with PTSD smoke to alleviate negative affect and counteract deficient positive affect commonly associated with the disorder; however, limited research has examined associations between PTSD symptoms, smoking motives, and affective vulnerability factors....
متن کامل